Problem 12a

Let a be a partially ordered set and X and Y be **non-empty** subsets of A with least upper bounds and greatest lower bounds. If $X \subseteq Y \subseteq A$ then $glb(Y) \le glb(X) \le lub(X) \le lub(Y)$

Proof:

If a is any lower bound for Y then a \le y \forall y \in Y. But since all elements of X are also elements of Y this means that a \le x \forall x \in X and a is a lower bound for X. Since glb(Y) is a lower bound for Y, it is also a lower bound for X. Since glb(X) is the greatest lower bound for X it is greater than or equal to any lower bound for X so, in particular: glb(Y) \le glb(X). A similar argument implies that lub(X) \le lub(Y). Finally, since X is not empty \exists x \in X, and by the definition of lower bound, glb(X) \le x. By the definition of upper bound x \le lub(X). Putting the two inequalities together gives glb(X) \le x \le lub(X), so glb(X) \le lub(X). Thus, since all three inequalities hold: glb(Y) \le glb(X) \le lub(X) \le lub(Y)